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Control Theory I Signal Flow Graphs

This lecture will discusses the following topics

1. Introduction.

2. Flow-Graph Definitions.

3. Rules of Signal flow graph:

4. Signal flow graph for control system.

5. State Transition Signal Flow Graph

4.6. Simplification for the system of dual inputs

4.7. Matlab program for signal flow graph
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4.1. Introduction:

The block diagram is a useful tool for simplifying the 

representation  of a system.  The  block  diagram has  only one

feedback loop and may be categorized as simple block diagrams.

When it has two, three, etc, feedback loops; thus it is not a simple 

system. When intercoupling exists between feedback loops, and

when a system has more than one input and one output, the control 

system and block diagram are more complex. Having the block

diagram  simplifies  the  analysis  of  complex  system.  Such  an 

analysis can be even further simplified by using a signal flow graph

(SFG), which looks like a simplified block diagram.
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An SFG is a diagram that represents a set of simultaneous

equations .It consists of a graph in which nodes are connected by

directed branches. The nodes represent each of the system

variables. A branch connected between two nodes acts as a one-

way signal multiplier: the direction of signal flow is indicated by an

arrow placed on the branch, and the multiplication of general

matrix block diagram representing the state and output equations.

factor (transmittance or transfer function) is indicated by a letter

placed near the arrow. Thus, in Fig.4.1, the branch transmits the

signal x1 from left to right and multiplies it by the quantity a in the

process. The quantity a is the transmittance, or transfer function. It
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may also be indicated by a=t12 , where the subscripts show that the 

signal flow is fromnode1to node 2.

Fig.4.1. Signal flow graph for x2=ax1

4.2. Flow Graph Definitions.

The analysis of flow graph is achieved by mathematic process of 

anode that it performs two functions:

1. Addition of the signals on all incoming branches
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2. Transmission of the total node signal (the sum of all incoming

signals) to all outgoing branches these functions are illustrated in

the graph of Fig.4.2, which represents the equations

w  au  bv, x  cw, y  dw(4.1) Three types of nodes are of

particular interest:
Source nodes (independent nodes).These represent

independent variables and have only outgoing branches. In Fig.4.2,

nodes u and v are source nodes.

Sink nodes (dependent nodes). These represent dependent

variables and have only incoming branches. In Fig.4.2, nodes x

and y are sink nodes.
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Fig.4.2. Signal flow graph for equation(4.1)

Mixed nodes (general nodes). These have both incoming and

outgoing branches. In Fig.4.2, node w is a mixed node. A mixed

node may be treated as a sink node by adding an outgoing branch of

unity transmittance, as shown in Fig.4.3, for the equation

x  au  bv, & w  cx  cau  cbv (4.2)
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A path is any connected sequence of branches whose arrows are

in the same direction. A forward path between two nodes is one that

follows the arrows of successive branches and in which a node

appears only once. In Fig.4.2, the path uwx is a forward path

between the nodes u and x.

Fig.4.3. Mixed and sink nodes for a variable
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Input Node (Source): An input node is a node that has only

outgoing branches.

Output Node (Sink): An output node is a node that has only

incoming branches. However, this condition is not always readily

met by an output node.

Path: A path is any collection of a continuous succession of

branches traversed in the same direction. The definition of a path is

entirely general, since it does not prevent any node from being

traversed more than once.
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Forward Path: A forward path is a path that starts at an input node

and ends at an output node and along which no node is traversed

more than once.

Loop: A loop is a path that originates and terminates on the same

node and along which no other node is encountered more than

once.

Forward-Path Gain: The forward-path gain is the path gain of a 

forward path.

Loop Gain: The loop gain is the path gain of a loop.

Nontouching Loops: Two parts of an SFG are nontouching if they 

do not share a common node.
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.3. Rules of Signal flow graph

When constructing an SFG, junction points, or nodes, are used to 

represent variables. The nodes are connected by line segments

called branches, according to the cause-and-effect equations. The

branches have associated branch gains and directions. A signal can

transmit through a branch only in the direction of the arrow.

1. The value of a node with one incoming branch, as shown below

is

X 2  aX1 (4.3)
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2. The total transmittance of cascaded branches is equal to the

product of all branch transmittances. Cascaded branches can be

combined into a single branch by multiplying the transmittances ,as

shown below.

3. parallel branches may be combined by the transmittances, as 

shown below.

4. A mixed mode may be eliminated as shown below
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5. A loop may be eliminated as shown below

The derivation of last relationship can be explained as 

following equations.

in the
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


X 3  abX1 bcX 3 X 3 bcX 3  abX1







X 3(1 bc)  abX1 X 3  X1
1 bc

X 3  bX 2

X 2  aX1 cX 3

ab

(4.4)

6.Signal flow graph (SFG) applies only to linear systems.

7.The equations for which an SFG is drawn must be algebraic 

equations in the form of cause and effect.

8. Nodes are used to represent variables. Normally, the nodes are

arranged from left to right, from the input to the output, following a 

succession of cause-and-effect relations through the system.
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-a-

-b-

4.4. Signal flow graph for control system

Some signal flow graphs of simple control system are shown in 

Fig.4.4. For such simple graphs, the closed loop transfer function

C(s)/R(s) can be obtained easily by inspection. For more

complicated signal flow graphs, Mason’s gain formula is quite

useful.
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-e-

In  many practical cases  e wish to determine the relationship

between an input variable and an output variable of the signal flow 

graph. The transmittance between an input node and an output node

is the overall gain, or overall transmittance, between these two

nodes. Mason’s gain formula, which is applicable to the overall 

gain, is given by

Fig.4.4.(a-e). Signal flow graph forms for simple control system.

P   Pkk
 p

1
(4.5)

Where
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Pk= path gain or transmittance of the Kth forward path

∆k= cofactor of the Kth forward path determinant for the graph 

with the loops touching the Kth forward path removed.

∆= determinant of the graph.

∆=1-(sum of all different loop gains)+(sum of gain products of all 

possible combinations of two nontouching loops)- (sum of gain

products of all possible combinations of three nontouching

loops)+…….

 1La LbLc  Ld LeL f   .....
a b,c d ,e, f
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 La  sum of all different loop gains
a

LbLc  sum of gain products of all possible combinations of two
b,c

nonteaching loops

Ld LeL f  =sum of gain products of all possible combinations of
d ,e, f

three nonteaching loops.

Example(1): Find the transfer function C(s)/R(s) for the system 

block diagram shown below by using Mason' gain formula?
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Solution:

In the system there is only one forward path between the input R(s) 

and the output C(s). The forward path gain is,

p1 G1G2G3
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From the signal flow graph, we see that there are three individual 

loops.

The gains of these loops are;

L1 G1G2H1

L2  G3G2H2

L3  G1G2G3 `

Note that since all three loops have a common branch, there are no 

non-touching loops; hence, the determinant is Δ given by

∆=1-( L1+ L2 +L3)=1-G1G2H1+G3G2H2 +G1G2G3
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The factor ∆1 of the determinant along the forward path connecting

the input node and output node is obtained by removing the loops

that touch this path.

Since path P1 touch all loops, we have ;  ∆1=1

Therefore the overall transfer function of the closed loop system is

given by:
C(s)


P11

R(s) 

HW.  Try  to  obtain  the  transfer  function  by  block  diagram 

reduction and compare the results.
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Example (2): Consider the SFG of a system shown in the following

figure. Obtain the closed-loop transfer function C(s)/R(s) by use of

Mason's gain formula?

Solution:
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In this system there are three forward paths between the input and 

the output.

p1 G1G2G3G4G5

p2 G1G6G4G5

p3  G1G6G7

There are four individual loops in this system

L1  G4H1 L2  G2G7H2

L3  G6G4G5H2 L4  G2G3G4G5H2
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Loop L1 does not touch Loop L2 and there are no nontouching

loops in this system just L1 and L2 so that the determinant of the

system ∆ will be

∆=1-( L1 +L2+ L3+ L4)+ L1 L2

The factor ∆1 is obtain from ∆ by removing the loops that touch p1

,therefore by removing L1,L2 , L3, L4 and  L1 L2 ,the factor ∆1  =1. 

Similarly by eliminating all loops in ∆ that touch p2.

∆2  =1

∆3 can be obtained by removing ,L2 , L3, L4 and L1 L2 from the ∆ 

that touch p3

∆3=1- L1 ; The transfer function of the closed loop system C(s)/R(s)
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 p11  p22  p33)
R(s) 

C(s) 1 (

R(s) 1G4H1 G2G7H2 G6G4G5H2 G4H1G2G7H2 G2G3G4G5H2

G1G2G3G4G5 G1G6G4G5 G1G2G7(1G4H1)C(s)


To illustrate how an equivalent SFG of a block diagram is

constructed and how the gain formula is applied to a block diagram,

consider the block diagram shown in Fig.4.5.(a). The equivalent

SFG of the system is shown in Fig. 4.5.(b).
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(a)

(b)

Fig. 4. 5. (a) Block diagram of a control system, (b) Equivalent 

signal flow graph.
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Notice that since a node on the SFG is interpreted as the

summing point of all incoming signals to the node, the negative

feedbacks on the block diagram are represented by assigning

negative gains to the feedback paths on the SFG. First we can
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system and their

p1 G1G2G3

p2  G1G4
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L3  G1G2G3 

L4  G4H2

L5  G1G4

The closed loop transfer function of the system is obtained by

applying Mason' gain formula to the SFG or using the block

diagram reduction.

Y (s)


G1G2G3  G1G4

R(s) 

 1G1G2H1 G2G3H2 G1G2G3 G4H2 G1G4

R(s) 1G1G2H1 G2G3H2 G1G2G3 G4H2 G1G4

G1G2G3 G1G4Y (s)

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Quiz No. Two:
Q1. A. Obtain a state-space equation and
transfer function for the system defined by:

Q1. B. Simplify the block diagram shown in Figure 
below and obtain the closed-loop transfer function 
C(s)/R(s)?
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4.5. State Transition Signal Flow Graph:

The state transition SFG or, more simply, the state diagram, is a 

simulation diagram for a system of equations and includes the

initial conditions of the states. Since the state diagram in the

Laplace domain satisfies the rules of Mason’s SFG, it can be used

to obtain the transfer function of the system and the transition

equation. The basic elements used in a simulation diagram are a

gain, a summer, and an integrator. The signal-flow representation in

the Laplace domain for an integrator is obtained as follows:

x 1(t)  x2 (t); sx1(t)  x2 (t) (4.6).

s s

x2 (t) x1(t0 )
X (t) 1  (4.7)
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Fig.4.6. Representations of an integrator in the Laplace domain in a 

signal flow graph
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The above equation may be represented either by Fig.4.6.a or

Fig.4.6.b. A differential equation that contains no derivatives of the

input, as given by:

Dn y  a Dn1y  a D y  a y  u
n1 1 0 (4.8)
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Eample4: For the following equation find:

u
1

LC
y 

1

LC
y.. 

R y. 
L

(a) Draw the state diagram. (b)  Determine the state 

equation?

Solution:

transition

(a)  The  state  Diagram,  Fig.  below,  includes  two  integrators, 

because this is a second-order equation. The state variables are
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selected  as  the  phase  variables  that  are  the  outputs  of  the 

integrators, that is, x1=y and x2= x1.

(b) The state transition equations are obtained by applying the 

Mason gain formula with the three inputs u, x1(t0), and x2(t0):

R / L x (t )  s x (t )  s / LC U (s)
(s) (s)(s)

(1 s
X (s)  s

2 2

1   0 2 0

1 1

1

x (t )  s / LC U (s)
(s)(s)

X (s)  s / LC x (t ) 
(s)

1

2 0

1

2 1   0

2 s

L LC

R


s
(s)  1 s

21

The signal flow graph for this system is
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After simplification these equations become

 
X 2(s)

X (s) 
X1(s) 





U(s)
sx2(t0) s / LC

1x1(t0)

1/ LC 

  s   (R / L)s 1/ LC 1/ LC
( )  1 s  R / L

2
X s
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4.6. Simplification for the system of dual inputs:

According to the principle of superposition theory, we must find 

the output by considering one input at a time and cancelled another

courses. For the system is shown in Fig.4.7, we find C1(s)/R(s), and

then C2(s)/D1(s), and C3(s)/D2(s), the final output of system is

achieved by summation of these three inputs; C= C1+ C2+ C3

Fig.4.7. Block diagram for dual inputs control system.
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Output due to input R(s):

Let D1(s)=0 and D2(s)=0, Hence the system becomes; the transfer 

function for this block is ;

R(s) 1G1(s)G2 (s)H1(s)H 2 (s)

G1(s)G2 (s)C1(s)
 (4.9)

Output due to input D1(s):
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Let R(s)=0 and D2(s)=0, Hence the system becomes; the transfer 

function for this block is ;

D1(s) 1G1(s)H1(s)H2 (s)

G2 (s)C2 (s)
 (4.10)

Output due to input D2 (s):

Let R1(s)=0 and D1(s)=0, Hence the system becomes; the transfer 

function for this block is ;
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D2 (s) 1G1(s)G2H1(s)H2 (s)

G2 (s)G1(s)H2 (s)C3(s) 
 (4.11)

The total output of the system is the summation of outputs with 

respect to a corresponding input:

C= C1+ C2+ C3

1G1(s)G2(s)H1(s)H2(s) 1G1(s)H1(s)H2(s) 1G1(s)G2H1(s)H2(s)

D2G2(s)G1(s)H2(s)RG1(s)G2(s) D1G2(s)

C 
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1G1(s)G2 (s)H1(s)H2(s) 1G1(s)H1(s)H2(s) 1G1(s)G2H1(s)H2(s)

D2G1(s)H2(s)]G2 (s)[RG1(s) D1C   

The solution by using signal flow graph: Firstly draw the signal 

flow graph diagram for original B.D;

P   Pkk
 p

1
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When apply the superposition theory can be get;

Output due to input R(s):

Let D1(s)=0 and D2(s)=0, the signal flow graph becomes;

By apply the Mason's formula:

p1  G1(s)G2 (s)

L1  G1(s)G2 (s)H1(s)H2 (s)
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L2  0

 1 L1 1G1(s)G2 (s)H1(s)H2 (s)

1 1

P   1 (P )R 1   1


R(s) 1G1(s)G2 (s)H1(s)H 2 (s)

G1(s)G2 (s)


C1(s)
PR

Output due to input D1(s):

Let R(s)=0 and D2(s)=0, the signal flow graph becomes;
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p1 G2 (s)

L1  G1(s)G2 (s)H1(s)H2 (s)

 1 L1 1G1(s)G2 (s)H1(s)H2 (s)

1 1

P 
1 (P )1   1D1 
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D1(s) 1G1(s)G2 (s)H1(s)H2 (s)

G2 (s)


C2 (s)
PR

Output due to input D2(s):

Let R(s)=0 and D1(s)=0, the signal flow graph becomes;

p1  G1(s)G2 (s)H2 (s)

L1  G1(s)G2 (s)H1(s)H2 (s)
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 1 L1 1G1(s)G2 (s)H1(s)H2 (s)

1 1

P 
1 (P )D2 1   1


D2 (s) 1G1(s)G2 (s)H1(s)H2 (s)

G1(s)G2(s)H2 (s)


C2 (s)


D2P

Ptotal  PR  PD1  PD2

21G1(s)G2(s)H1(s)H2 (s)

G1(s)G2(s)H2 (s)

11G1(s)G2 (s)H1(s)H2 (s)

G2 (s)

1G1(s)G2(s)H1(s)H2 (s)

G1(s)G2(s)

D

DR Ptotal 


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1G1(s)G2(s)H1(s)H2 (s)

Note: Where the denominator represents the polynomial of the

system therefore; it has the same form in all inputs affect and in all

form where the polynomial refer to clc's of the system (i.e. A

matrix in state space form ).

C 
G2 (s)[G1(s)R  D1  G1(s)H2 (s)D2 ]
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Example5: Find the T.F for the block diagram shown below?

Solution:

By using superposition theory:

1. C/R(s) by set D1 and D2=0; the block becomes:
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And can be continue with solution by using B.D.R and By using

S.F.G. and this is a home work. From all the above examples, we 

can see that all loops and forward paths are touching in this case.
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As a general rule, if there are no nontouching loops and forward

paths in the block diagram or SFG of the system, then the Mason'

gain formula can be putted in a simplified formula, as shown next.

C


forward  path gains 

R 1 loop gains

4.7. Matlab program for signal flow graph

Also all the complex solution can be minimize by using MATLAB 

with the following program, for the control system that is shown in

Example 5, we can find the solution by using Matlab program. The 

following program for MISO system to get the final transfer
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function which can be get analytically by block diagram reduction 

or signal flow graph.

Program in MATLAB to find T.F. of MISO system:

n1=[1];d1=[1];

n2=[8.5];d2=[1];

n3=[1];d3=[1 0];

n4=[10];d4=[1 10];

n5=[.8];d5=[1];

n6=[4];d6=[1 16];
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n7=[1 1];d7=[1 4 10];

n8=[1];d8=[1];

n9=[1];d9=[1];

nblocks=9; 

blkbuild;

q=[ 1 0 0 0

2 1 -6 0

3 2 -5 8
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Control Theory I Signal Flow Graphs

4 2 -5 8

5 3 4 9

6 7 0 0

7 3 4 9

8 0 0 0

9 0 0 0 ];

iu=9; 

iy=7;
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Control Theory I Signal Flow Graphs

[ac,bc,cc,dc]=connect(a,b,c,d,q,iu,iy);

[num,den]=ss2tf(ac,bc,cc,dc,1) 

printsys (num,den)

%i/p R & O/P C

% 4.2633e-014 s^4 + 93.5 s^3 + 1674.5 s^2 + 2941 s +

1360

%T.F. R/C= --------------------------------------------------------

% s^5 + 38.8 s^4 + 458 s^3 + 2085.2 s^2 + 4314 s + 1620

%i/p D1 & O/P C

% 2.8422e-014 s^4 + 11 s^3 + 197 s^2 + 346 s + 160
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% T.F C/D1= ------------------------------------------------------

% s^5 + 38.8 s^4 + 458 s^3 + 2085.2 s^2 + 4314 s + 1620

%i/p D1 & O/P C

% s^4 + 27 s^3 + 186 s^2 + 160 s - 1.728e-011

% T.F. D2/C -------------------------------------------------------

% s^5 + 38.8 s^4 + 458 s^3 + 2085.2 s^2 + 4314 s + 1620
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a = 9

s= 0; s = -7.854; s = -1.146 ( two real poles)
)146.1)(854.7(

9

)99(

9
)(

2 





ssssss
sC

1

Overdamped Response
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tt eKeKKtc 146.1
3

854.7
21)(  
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Underdamped Response

)598.2sin598.2cos()( 32
5.1

1 tKtKeKtc t  

s = 0; s = -1.5 ± j2.598 ( two complex poles)

a = 3 10  
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Undamped Response

a = 0

tKKtc 3cos)( 21 

s = 0; s = ± j3 ( two imaginary poles)

0
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a = 6

Critically Damped System

tt teKeKKtc 3
3

3
21)(  

S = 0; s = -3,-3 ( two real and equal poles)

1
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Matlab Program 
% Discuses the affect of damping ratio on control system 
response
N1=[9];
d1=[1 3 9];
d2=[1 9 9];
d3=[1 6 9];
d4=[1 0 9];
t=0:0.1:5;

y1= step(N1,d1,t);
y2= step(N1,d2,t);
y3= step(N1,d3,t);
y4= step(N1,d4,t);
plot(t,y1,'.r',t,y2,'k',t,y3,'-.m',t,y4)



Second – Order System
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Effect of different damping ratio, ξ

Increasing ξ



































































































































Q1. Consider the system shown in Figure 1. Determine
the value of k such that the damping ratio ζ is 0.5.Then
obtain the rise time tr , peak time tp, maximum
overshoot Mp, and settling time ts in the unit-step
response?









































H.W.1.  Consider the following characteristic equation:

Using the Routh stability criterion, determine the 
range of K for stability?     (( Ans:  K > 6.056 ))



H.w.2. Consider the closed-loop system shown in Figure 1,

If K/J=4, what is the value of Kh will yield the damping ratio

to be 0.6? (( Kh = 0.6 ))

H.w.3. Consider the closed-loop system shown in Figure 2.

Determine the range of K for stability. Assume that K>0.

(( Ans: 12.5>k>0 ))





Walter Richard Evans (January 15, 1920 – July 10, 1999)
was a noted American control theorist and the inventor
of the root locus method in 1948. He was the recipient
of the 1987 American Society of Mechanical
Engineers Rufus Oldenburger Medal and the
1988 AACC's Richard E. Bellman Control Heritage
Award.

https://en.wikipedia.org/wiki/Root_locus
https://en.wikipedia.org/wiki/American_Society_of_Mechanical_Engineers
https://en.wikipedia.org/wiki/Rufus_Oldenburger_Medal
https://en.wikipedia.org/wiki/American_Automatic_Control_Council
https://en.wikipedia.org/wiki/Richard_E._Bellman_Control_Heritage_Award































































































