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This lecture will discusses the following topics

| ntroduction.

Flow-Graph Definitions.

Rules of Signal flow graph:

Signal flow graph for control system.

State Transition Signal Flow Graph

Simplification for the system of dual inputs .

Matlab program for signal flow graph




4.1. Introduction:

The block diagram is a useful tool for simplifying the
representation of a system. The block diagram has only one
feedback loop and may be categorized as ssmple block diagrams.
When it has two, three, etc, feedback loops; thus it is not a smple
system. When intercoupling exists between feedback loops, and
when a system has more than one input and one output, the control
system and block diagram are more complex. Having the block
diagram simplifies the analysis of complex system. Such an
analysis can be even further ssimplified by using a signal flow graph
(SFG), which looks like a simplified block diagram.




An SFG is a diagram that represents a set of simultaneous
eguations .It consists of a graph in which nodes are connected by
directed branches. The nodes represent each of the system
variables. A branch connected between two nodes acts as a one-
way signal multiplier: the direction of signal flow isindicated by an
arrow placed on the branch, and the multiplication of genera
matrix block diagram representing the state and output equations.
factor (transmittance or transfer function) is indicated by a letter
placed near the arrow. Thus, in Fig.4.1, the branch transmits the
signal x; from left to right and multiplies it by the quantity a in the
process. The quantity a is the transmittance, or transfer function. It
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2. Transmission of the tota node signa (the sum of al incoming
signals) to al outgoing branches these functions are illustrated in

the graph of Fig.4.2, which represents the equations

w=au+bv, x=cw,y=dw(4.1) Threetypes of nodes are of

(independent nodes).These represent
independent variables and have only outgoing branches. In Fig.4.2,
nodes u and v are source nodes.

(dependent nodes). These represent dependent
variablesand have only incoming branches. In Fig.4.2, nodes x

and y are sink nodes.
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An input node is a node that has only
outgoing branches.

An output node is a node that has only
incoming branches. However, this condition is not always readily
met by an output node.

- A path is any collection of a continuous succession of
branches traversed in the same direction. The definition of a path is
entirely general, since it does not prevent any node from being

traversed more than once.




A forward path is a path that starts at an input node
and ends at an output node and along which no node is traversed
more than once.

A loop is a path that originates and terminates on the same
node and along which no other node is encountered more than

once.
The forward-path gain is the path gain of a

forward path.

: Theloop gain is the path gain of aloop.
Two parts of an SFG are nontouching if they

do not share a common node.
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Fig.4.4.(a-€). Signal flow graph forms for ssimple control system.

&=
In many practical cases e wish to determine the relationship
between an input variable and an output variable of the signal flow
graph. The transmittance between an input node and an output node
is the overall gain, or overall transmittance, between these two
nodes. Mason’s gain formula, which is applicable to the overall

gain, isgiven by

1
P=2=3 RA (4.5)
p

Where




Py= path gain or transmittance of the Kth forward path

Ax= cofactor of the Kth forward path determinant for the graph
with the loops touching the Kth forward path removed.

A= determinant of the graph.

A=1-(sum of all different loop gains)+(sum of gain products of all
possible combinations of two nontouching loops)- (sum of gain

products of al possible combinations of three nontouching

A :1—2La +ZLbLC - ZLdLeLf AF oo
a b,c

d,e f




> L, =sum of all different loop gains

> L,L, =sum of gain products of all possible combinations of two
b,c

nonteaching loops

> LyL.L¢ =sum of gain products of all possible combinations of
de,f

three nonteaching loops.
Example(1): Find the transfer function C(s)/R(s) for the system

block diagram shown below by using Mason' gain formula?
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The factor A; of the determinant along the forward path connecting
the input node and output node is obtained by removing the loops
that touch this path.

Since path P; touch all loops, we have ; A=1
Therefore the overall transfer function of the closed loop systemis

C(s) _ RA,
given by: R(S) A
C(s) G,G,G;

R(S) 1_ GleHl + G2G3H 2 + GleG3
HW. Try to obtain the transfer function by block diagram
reduction and compare the results.
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In this system there are three forward paths between the input and

the output.

P = GG,GG,Gs
P2 = GGG,Gs
P; = GGG,

There are four individual loopsin this system
L, =-G,H, L, =-G,G/H,
Ly = —GgG,GsH L, = -G,GG,GsH,,




Loop L; does not touch Loop L, and there are no nontouching
loops in this system just L; and L, so that the determinant of the
system A will be

A=1-(L; +Lo+ Lst+ Lo+ L Lo

The factor A; is obtain from A by removing the loops that touch p;
therefore by removing L,,L>, L3, Lsand L; L, thefactor A; =1.
Similarly by eliminating all loopsin A that touch p,.

Ay =1

Az can be obtained by removing ,L,, L3, Ly and L; L, fromthe A
that touch ps

As=1- L, . Thetransfer function of the closed loop system C(s)/R(S)




g(§):1(A+ A, + pP:A
R(9) Apll P2A, + P3Az)

C(s) _ GG,GGGs + GGGGs + GGG, (1+ Gy Hy)

R(s) 1+G,H; +G,GH,+GG,GH, +GH,G,GH, + GGG,GH,

To illustrate how an equivdent SFG of a block diagram is
constructed and how the gain formulais applied to a block diagram,
consider the block diagram shown in Fig.4.5.(a). The equivalent
SFG of the systemisshownin Fig. 4.5.(b).
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Notice that since a node on the SFG is interpreted as the
summing point of al incoming signas to the node, the negative
feedbacks on the block diagram are represented by assigning
negative gains to the feedback paths on the SFG. First we can

identify the forward paths and loops in the Systém and their
corresponding gains. That is; forward path gain

P =GGG

P, = GG,

Loop gains

L, =-G,G,H,

L, =-G,G3H,




Ls =-G,G,G3

L4 == _G4H2

Ls =-GiG,

The closed loop transfer function of the system is obtained by

applying Mason' gain formula to the SFG or using the block
diagram reduction.

Y(S) _ GG,G; + GG,

R(s) A
A :1+G|_G2H1 +GzG3H2 + G_LGst +G4H2 + G_|_G4
Y(s) _ GG,Gs + GG,

R(S) 1+GG,H, +G,G;H, +G,G,G; +G,H, + GG,




Quiz No. Two:

Q1. A.

V+4 +5y+2y=2i +ii+u+2u

Q1. B.




4.5. State Transition Signal Flow Graph:
The state transition SFG or, more simply, the state diagram, is a

simulation diagram for a system of equations and includes the
initial conditions of the states. Since the state diagram in the

Laplace domain satisfies the rules of Mason’s SFG, it can be used
to obtain the transfer function of the system and the transition
equation. The basic elements used in a smulation diagram are a
gain, a summer, and an integrator. The signal-flow representation in

the Laplace domain for an integrator is obtained as follows:

x1(t) = X, (t);= sx (1) = X, (1) (4.6)

X,(t) = Xzs(t) + Xl(;") (47)
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For the following equation find:

Ry &l By

U L U LC y LC

(@) Draw the state diagram. (b) Determine the state transition
equation?

Solution:

(@ The state Diagram, Fig. below, includes two integrators,
because this is a second-order equation. The state variables are




selected as the phase variables that are the outputs of the

integrators, that is, X;=y and X,= X.

(b) The state transition equations are obtained by applying the

Mason gain formulawith the three inputs u, X1(to), and X»(to):

_stl+s'R/L s s?/LC
Xq.(s)= A(S) X (to) + —A(S) X, (t) + WU (s)
- s?/LC st/LC
XZ(S)_—A(S) X, (o) + ( 9 X, (to) + AS) U(s)
‘1R s?
A(S) =1+ LC

The signal flow graph for this systemis
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L,=0
A=1-L =1+ G,(9)G,(S)H(S)H(9)
A =1

1
Pe == (PA)

5G9 _ G1(9)G,(9)
" RS 1+Gy(9G,(S)H1(9H(9)

Output dueto input D1(s):
Let R(s)=0 and D2(s)=0, the signal flow graph becomes;
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A=1-L =1+ G(9G,(5)H1(s)H(9)
A =1

_1
Poz = (PA)

_Cy(9 _  —Gy(9G,(9)H,(9)

%2 Dy() 1+Gi(9)G(9H1(S)H,(9)
Pota = R + Bor + P2
G(9)G(9) o G,(9) 5

1+ Gy (G (YHL(IH(S) 1+ Gy(9G,(H1(IH(S)

—~G(9G,(9H,(S)
1+ G,(9G,(S)Hy(H(S)

total —




c = G(9)[G(S)R+ D, — —G,(5)H, () D,]
1+ G,(5)G,(9)H1(9)H,(9)

Where the denominator represents the polynomia of the

system therefore; it has the same form in al inputs affect and in all
form where the polynomial refer to clc's of the system (i.e. A

matrix in state space form).
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As a generd rule, if there are no nontouching loops and forward
paths in the block diagram or SFG of the system, then the Mason'
gain formula can be putted in asimplified formula, as shown next.

C _  forward pathgains
R 1—loop gains

4.7. Matlab program for signal flow graph

Also al the complex solution can be minimize by using MATLAB
with the following program, for the control system that is shown in
Example 5, we can find the solution by using Matlab program. The
following program for MISO system to get the final transfer




s+1/(s"45+10)




function which can be get analyticaly by block diagram reduction
or signal flow graph.

Programin MATLAB to find T.F. of MISO system:
n1=[1];d1=[1];

n2=[8.5];d2=[1];

n3=[1];d3=[10];

n4=[10];d4=[1 10},

n5=[.8];d5=[1];

n6=[4];d6=[1 16];
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n7=[11];d7=[14 10];

n8=[1];d8=[1];
=[1];d9=[1];

-] >
| ©
o [
(@)

N

s=9;
Ikbuild;
0=[ 1000

(@}

W N
=
o}
O

2-58
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42-58
5349
6700
7349
8000
9000];
IU=9;

ly="7,
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ac,bc,cc,dc]=connect(a,b,c,d,q,iu,iy);
nuM,den|=ss2tf(ac,bc,cc,dc,

orintsys (num,den
%i/p R& O/PC

% 4.2633e-014 ™4 + 93.5 "3 + 1674.55"2 + 2941 s+

O T ]

% "5 + 38.8 M4 + 458 '3 + 2085.2 s*2 + 4314 s + 1620

%i/pD1& O/PC
% 2.8422e-014 ™4 + 11 "3 + 197 "2 + 346 s + 160
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0% "5 + 38.8 M + 458 '3 + 2085.2 SN2 + 4314 s+ 1620

Assist. Prof. Dr. Yousif Al Mashhadany 56 54




Control Theory 1 I'vansienr Response Analysis

Costrol Theory |
Assist. Prol. Dr, Yoursil Al Mashhodany

2019-2020

th
P

lssust. Prof. Dr. Youstf Al Mashhadany 1-




Control Theory 1 I'vansient Rexponse Analysis

th

:.JI
"

w

h
-

th
:Ja

lssist. Prof. Dr. Youstf Al Mashhadany 2-5




5.1. Analysis of a typical control system

Consider a first differential equation - f%:};? +antt)=1ult)

This may be the equation of a physical system with input u(l) and
output xit) 1)function ) is that part of t response which occurs near t
=} and then decays .this part of | response is due to the

charactenistics of the system only

i) Steady state part (5.8) (particular mtegral) 18 that part of the
response which 15 present throughout the period =0 to (= but at

this the complete solution because the transient part is absent.
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Covereran 4 haary I Pransienr Rexponse Analysis

X(t)=Ae +Z
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xo=La-e
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5.2 Samples of systems Response.
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deo(t)
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+ aw(t) = ey(t)
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Impulse at =0
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5.4. Second —order svstems and T.R. specifications.

DifTerential Equation of the C L position control system!

d*e,(t) A de,(t)
dt* dt

+K8,(t) = k8,(t)

Forstepinput , 8,(t) =R, >0

d*6,(t)  da,(t)
=+ a—+ KB, (t) = kR

Solve the differential equation,

1) S.S solution (6,(t) = 6,(t) = 0)
(90)5.5 =R
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Twoginary

Complex plane

1 ' =—@—«a ,a" = 4 Tinaginaey

GOXAs

0,)rr = (Co + Cit)e™®
], t)=R+ , -l-Ct'e'a Real axis
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Overdamped Response G(s) = 2.

s +as+b

a=9 5 > 1
[Cverdamped system

C(s)

9
52 +95+9

s=0;s=-7.854; s =-1.146 ( two real poles)







Underdamped Response  [Re e R

s 4+as+b

a=3 0<£&<1
|Urn:|er‘::lamp&d syslam I

C(s)

G
5? +35+9

c(t) =K, +e (K, cos2.598 + K, sin2.598)

s=0;s=-15j2.598 ( two complex poles)




| Underdamped response I




b

( ‘] — Bl ISI
rl rrl R G,S'__ 2 ra
a

U d

ETas.
25, Mo zen
2 poles,




Undamped response I




b

Critically Damped System G(s) = —

5T +as+b
Critically Damped System

C'(s)

2 poles. Mo zeros.

S=0;s=-3,-3 (two real and equal poles)



|Gri1inaliy Damped Hespunsel




Matlab Program

response
N1=[9];

d1=[1 3 9];

d2=[19 9];

d3=[169];

d4=[109];

t=0:0.1:5;

y1=step(N1,d1,t);
y2=step(N1,d2,t);
y3=step(N1,d3,t);

y4= step(N1,d4,t);
plot(t,y1,'.r',t,y2,'k',t,y3,"-.m',t,y4)



*  Underdamped
Overdamped
----- Critically Damped
Undamped




System Pole-zero Plot Response

G(s)
b
sZ2+ as + b

General

c() =1+ 0.171e 7-8597 —
1.171e 1-1461
G(s)
9
2
st+9s +9 —7.854 —1.146
Overdamped

=]

c(t) = 1 —e YcosV 8¢ +\/§ siny 87)
=1—1.06e " cos(+8r— 19.47°)

™S

G(s)
9
s2+ 25+ 9

Underdamped

o hMhamw—le 0

5]
S
~

-
-

c(r) =1 —cos 3¢

N
T

G(s)

9
s2+9

Undamped

G(s) c(r) =1 —3re 3 — 37

9
52+ 65+ 9

Critically damped




Effect of different damping ratio, §




1. Response becomes faster and faster as the roots moved along
the -ve real axis. The time constant é also decreases
progressively

2, Damping increases as the roots moves away in the -ve real
dirction.

3. Frequency of oscillation increases as the roots move away
from the real axis (along the imaginary axis direction)

All control system design methods attempt to shifl the roots of the
characteristic equation from an undesirable location to a desirable

location




5.5. Parameters of transient-response.

In many practical cases , the desired performance charactenistics of
control svstems are specified in terms of time domain quantities
Systems with energy storage cannol respond mnstantaneously and
will exhibil transient response whenever they are subjected to
mputs or disturbances. Frequently . the performance charucteristics
of a control system are specified in terms of the transient response
to a unit-step mput since it 15 easy to generate and is sufficiently
drastic.(If the response 1o a step mput 8 Kknown , it is

mathematically possible to compute the response to any input).




The transient response of a system to a wmt-step depends on the
mitial conditons. lor convemience i comparing transient
responses of various systems, 10 18 a common practice 1o use the
standard mitial condition that the svstem 1s at rest initally with
output and all tume derivatives thereof zero, Then the response
charactenstics can be casily compared,

The transient response of a practical control system often exhibits
damped oscillations before reaching steady state . In specifying the
transient-response characteristics of a control system to a unil-step

mput , it is common to specifving the following:




1.

Delay time , t,

3.

Peak time , t,

Maximum overshoot , M

£

-n

Settling time |, £,

These specifications are defined n what follows and are shown

graphically in fig.

1. Delay time. £, the delay time 1s the time required for the

response to reach half the final value the very first ime.

2. Rise time . £, the rise time is the time required for the response

o nise from 10% to 90% 5% to 953% . or (0% to 100% of its linal




value. For under-damped second —order systems. the 0% to 100%
rise time 18 normally used. For over-damped svstems. the 10% to

00% nise time 18 commonly used.

3. Peak time. &, the peak tune is the tme required for the response

to reach the first peak of the overshoot.

4. Maximum (percent) overshoot. M, : the maximum overshool is
the maximum peak value of the response curve measured [rom
unmty, If the final steady-state value of the response differs from
unity, then it 15 common to use the maximum percent over-shoot [t
is defined by




ctt, )

Maximum percent overshoot = ———— x 100%

The amount of the maximum (percent) overshoot directly indicates
the relative stability of the system,

6. Settling time , t ithe settling time is the tume required for the
response curve to reach and stay within a range about the final
value of size specified by absolute percentage of the mal value
(usually 2% or 5%). The settling ume is related to the largest time
constant of the control system . Which percentage error eriterion to
use may be determmed from the objectives of the svstem design m
question. The time-domain specifications just given ure quite

important sinee most control svstems are time-domain svstems; that




18 . they must exhubit acceptable tme responses. (This means that
the control svstem must be modified until the transient response 1s
satisfactorv). Note that 1l we specifv the values of
ta, by byt and M, then the shape of the response curve s
vitually determuned. This may be seen clearly from Fig 5.3
Second-order systems and transtent-response specifications. In the
following , we shall obtain the nise time, peak time , maximum
overshoot, and settling time of the second-order system given by
Equation below. These values will be obtained in terms of € and

wy - Lhe system 1s assumed to be under-damped.
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Fig. 5.4, Transient Response Parameters

Peak time , t,: Refernng to Equation , we may obtain the peak

time by differentiating c(t)

with respect to time and letting this denvative equal can be

sunplified o

ﬁ - ( ‘(“'ut(co t +; i t
o wne SWy \/l-_(‘sm wyt)

z : d
e S (@, sinw,t - =C0s Wy t)

N
J1=¢
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Quiz No Three

Q1.A. For thefollowing mechanical system obtain
the transfer function Xi(s)/U(s)?
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QI7.B. For the following electrical system, fine the state

space representation of Vos(s)/l/i(s).?
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Conirol Theory I Transient Response Analysis

Damped natural frequenc 1-22

Damping ratio and natural frequency :

1.  Delay time, t,

Rise time | t,

Maximum overshoot , M,

IS, Settling time , £,0 811
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The speed of decay of the transient response depends on the value
of the time constant 1/{w,. For a given w,, , the settng time L is

a function of the damping ratio ¢,

5.6. Solved problem

Prob.l. A field controlled die motor is characterized by the

following differential equation.

dw(t)
dt

Where, wit) 15 the angular velocity of the motor mn radians/second

and 1f 1s the field current m mA.

0.5

+w(t) = 1.57i(£)
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At =0 _w(lh=0

0=157+A

A=—157

w(t) =157+ (1 —e™%)

1) wity) = 25% of the S.S speed (157 rad/second)

4157 =157+ (1 —e™h) = b, = 0.1438 sec
%* 157 = 157 {1 —e72%) = t; = 0.3466 sec

EE’ 157 = 157 +(1 —¢7%%) = t; = 0.6931 sec
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ef = 100 = l, > 3 200(,

p__ 1 _ 10
e, 100+20D 100+20D

from system equation.
(0.5D + )w = 1.57i;

¥ = 227 in rad/second =mes
iy~ 0SD+1 e oS pe

mrp.m
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1000 14902
2000+ |00 {050 =)

rLpm
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volts
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1000 14.992 1499200

b = 00 S ¥ 100 05D+ 1 (D 2)(D+5)

H=0.005 volt/rp.m

w(t) 6 1499200
e.{t) 14+GH D?+7D+7506

WD AW o (t)
1 =
= 5 506 w(t) Er

Differential Equation of the C 1. system




1) Forw(t)|;=e, =900 7. p.m
D=D*=0 atsteady state

1499200
7506

“’(t)SS = 900 - er
e, = 4.506 volts
Potentiometer factor =0 43506

) Forw(t)ss = 1100 rpm

Potentiometer factor =0.5507

e, = 5.507 volts




if the amphtier gan suddenly deereases by 25% what would be
the range in the motor speed if 1t was earlier running at %0 rpm.

when the motor 15 runmng at %00 r.p.m
e, = 4.506 volts
Amplifier gain=750

w(t) 1124400
e.(t) D%+ 7D+ 5632

__AS0841124410

ALSS w(t)|izw = e~ 8996 rpm




Prob.2. A small cleetrie oven 18 known to have a first order
differential equation as its deseribing equation. when the rated mput
of 20 volt 1s apphed to the oven at 25°C, the steadv state
temperature 1s found to be 1225°C and a temperature of 625°C is

reached in 30 seconds,

a)Write down the differential equation of the ovein
General first order differential equation,

0 4 aT(t) = bey (1)

Oven Oven
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TItL 25 2 i g
— — ] —
(t) ( &31) € t ﬂ'-?l

Al = (steady state), T{t=

b
1225 =—20
Ll

Att=30 1{t}=625

b
625 = (25 “ 20
'

) v o0

225°%C

h
—20
i ]




625 = (25 — 1225) = & '"* + 1225
a={( 0231049

b=1.4151755

Oven equation 1s

dr(t)
—— +00237(t) = 1415¢,()

b) it 1s now required to control the temperature of the oven by a
close loop feedback system as shown in figure below, Obtam the

differential equation of the overall system.




1.415

g TANOEL oy meane — 103
-AD+0.023 yH=5+10""+200= 10

T 6 1.4154
e, 1+GH D+0023+A+1415+107

ciealculate the value of *A’ such that if ‘A’ increases by 10% the
steady state change n the oven temperature does not exceed (.3°C

for &; = 1 volis
Tx - Tz = 0.5

1415+ 1,1+ A 141544 :
0023+ 1415+ 1101077« A 0023+ 14154107 v A

0.

(97
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T(t) 1.4154 K
e, D+0023+A4+1415%1073 (D +q)

a=0023+2924.153 % 1.415 « 107" = 4.160676

Time constant=T = Lo 0.240345 sec

Q
ewhal 18 the range of mput command mn volts requied for
controlling the temperature rom 100°C o 1000°C.

1.415+2024.153 o, = 1137676496
0.02342924.153+1 41501077 1 3,1406764

At §§ T=

T = 994472« ¢,
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6.1. Introduction.

The smmple closed-loop feedback system. with umty feedback.,
shown n Fig. 6.1, may be called a tracker since the output ¢(1) 15
expected to track or follow the input r(t). The open-loop transter
function for this system is { GisFC(syLE(s) r.which is determined
by the components of the actual control system. Generally G(s) has

one of the following mathematical forms;
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K, (1+TsX1+7.,s)
& (1+7 s¥14T,5)
K(1+Ts)1+7,s)

s(1+T sX1+Ts).....
K.(1+Ts)l+T.s)

((5)
G(s)=

(r(s)=

T S A+Ts)A+Ts)..
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Gs)= =K, G'(s)

(L+as+a.s’ +as”)
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The degree of the denominator 18 n=m w. For a umty-feedback
svstem. E and C have the same umts. Therefore. K, 18 non-
dimenstonal, K has the

unils of seconds-1, K+ has the units of seconds-2

In order to analyze each control system, a “‘type™ designation is
mtroduced. The designation is based upon the value of the exponent
m of s mn FEquatton{6.1). Thus, when m=0, the system represented
by this equation iy called a Tvpe 0 system, when m=1, 1t is called a
Tvpe | system; when m=2, 1t 1s called a Type 2 system; ete. Onee a
physical svstem has been expressed mathematically, the analysis is
nxlependent of the nature of the physical system, It 15 mmmatenal

whether the system is electrical, mechanical, hydraulie, thermal, or




a combination of these. The most common feedback control
svstems have Type 0, 1. or 2 open-loop transter functions. [t 1s
mportant to analyze each type thoroughly and 1o relate 1t as closely
as possible to its transtent and steady-state solution. The varous
types exhibit the following steady-state properties:

Type 0: A constant actuating signal results in a constant value for
the controlled vanable.

Type 1: A constant actuating signal results i a constant rate of
change (constant velocity) ol the controlled vanable.

Type 2. A constant actuating signal results i a constant second

dertvative (constant ncceleration) of the controlled variable,




Type 3: A constant actuatmg signal results i a constant rate of

change of acceleration of the controlled variable.

These classilications lend themselves to definition in terms of the
differential equations of the system and fo identification in terms of
the forward transfer fumction. For all classifications the degree of
the denominator of Gis)H(s) usually is equal to or greater than the
degree of the numerator because of the physical nature of feedback
control systems. That is, in every physical system there are energy-
storage and dissipative elements such that there can be no
mstantaneous transfer of energy from the mput to the output

However, exceptions do oceur




6.2. Steady-State Step Error Coefficient.

The error coefficients are independent of the system type, They
apply to any system type and are defined for specific forms of the
mput, e, for a step, ramp, or parabolic nput. These error
coeflicients are applicable only for stable umty feedback systems

The results are summarnized in Table 6.1.

Table 6.1. Definitions of Steady-State Error CoefTicients for Stable

Unity- Feedback Systems




, Definition Form of
Error Value of error
& of error input signal
coefhicient coefficient
coefficient rit)
()., - <
) lim__, G(s) I} £ (1)
(1)) . :
. (s :
). lhim__ 5((s) leu (1)
(/)-()y /\)_]_.,'l (4’]

elr)..

lim_, 57G(y)

b




The step error coefficient 1s defined as:

v, steadvstare valye of outoute(t). ;
step ervor cogfficient = > NPy = K

:

steadystate value of acuating signal e(t),,
and imphies only for a step mpul, r{t)=Rau(1).1he steady state value
ol the output is oblained by apply final value theorem.

MH¥) :’i it (3s)

|+ s) ¥ 4+ )

C(t). =lim, , sC(s)=lim,_|

R)
Simtlarly for efi),,

. . R IR !
g(t), =lm__ sC(s)=lim _|[§y——]=Ilim_ R
' 3 1G9 .vl “'l|+G(.v) ol

Substitute the above two equation 1o get step error coeflicient




step error coefficient = ———————

lim, *-lmﬂul
Smcee both numerator and denommnator of the above equation m the
limit can't be zero or infinty simultaneously, where £ #0 the
indeterminate 0/0 or =o'« never oceur. Thus this equation reduces
to K, Therefore applying (step error coefficient =lm , _, G{s)=&,)
to each type svstem yields

A, o=hm, !‘—'-Qf !'99 tf‘f)—""" = K, for type zero system
(1+7 sM1+1.8).

K, == for type one system




K, == lor type two system
The ramp error coetlicient 1s defined as.
stearvatate derivaltveol oniputiedty,

Ramp eérror coefficien = ————= ‘ : '
steadysiate valueof aenating signal (1),

Therefore applying (ramp error coeflicient =lim,  sG{s)=£,) to

each type system vields

K (T sH1+T55), 0000

“=0 for type 2ero system
A+ L0479, - :

K. =hm __x

K, =X, for type one system
K, == for lype two system

The parabolic error coefficient 18 defined as:




FParabolicerror coefficien =

steadvytate of sccond derivativeof outputly' 1), P

steadystate value of ackating yignal (1),
Therefore applying (ramp error coefficient =lim,__ s'G{s)=K ) to

gach type system vields

2 K (P Tsi(1 4+ Tx)

~=0 for type zero system
(14T sH1+ T 5)...., 3

K =lim, , s

L_=0 for type one system

& =K, for tvpe two system

Table 6.2. below gives the values of the error coelficients for the
Type 0,1, and 2 systems. These values are determined from Table

6.1. The reader should be able to make ready use of Table 6.2 for




evaluating the appropriate error coefficient. The error coefficient 18
used with the definmtions given mm Table 6.1 to evaluate the
magmitude of the steady-state error.

Tuble 6.2 Steadv-State Error Coeflicients [or Stable Svstems

System Step error Ramp error parabolic error

type | coefficient Ky | coefficient K, coefficient K,

() l‘\'_" () ()

| @ K, |
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In the open loop control svstem the gain Ke 1s calibrated so that

Ke= K. thus the transfer function of open loop control system 1s:

£
()= i = :
E1=ul 14T

In the closed loop control svstem the gam K, of the controller is set
s0 that K K>>1

Assuming a siep mput, let us compare the steady state errors for
those control svstems, For the open loop control system the error
signal 15!

H=r(N—=ot). Ur

E(8)=R(0)-C(s), — B =1-G{))els)

The steady state error i & umit S1ep response 18




¢, =lim,_, 5£(5)

‘ 2 | =
g, =lim,_, s|1=CG(5)]=: — =1=-05(0)
s

Table 6. 3. Steady state error in term of gan K

Step mpul

ramp inpul

parabolic mpul

riy=I r{Ly=t H=1/2 1
Type |
system ﬁ‘\ b x
Tvpe 1
system {) i
Type 2 |
system () 0 k




If the Gy0)de gam of the open loop control svstem 18 equal to
unity. then the steadv state error 18 zero. Due environmental change
and aging of the components, however the de gain Gy(0) wall dnit
from unity as time elapses and steady state error will no longer be
equal to zero. Such steady state error will remain until the system is
recalibrated see table (6.3),

For the closed loop control system the error signal 1s:

E(x)= R(3)=C(x)

|
E($)=]——|R()
(# ll+(}(s}l (s

o
Where : G(r)=—=
1+




The steady state error in the umit step response 18

e_=lm_, 3|

-+0

|
1+C(s) 8

| +G(0) g +_A'_., K
In the closed loop system, gam £, 1s set at a large value compared
to 1/K. Thus the steady state error can be made small but not
exactly zero.
Let us assume the following variation in the transfer function of the
plant. assuming Ke and £, constant.

K+ AL
| Sy




As an example let us assume that K=10,AK=1 or AK'A=0.1. Then
the steady state error in the umt step response becomes

¢, =1= V(K +AK)=1-1.1=-01

For the closed loop system, if gain K, is set al |O0/K. then the
steady state error i the umit step response becomes

i
e T (H0)

|
g, =
1+ IOU(K-*— AK)
k
£ - = 1,009

1+110




Thus closed loop control system is superior to open loop control
system in the presence of environmental changes, aging of
components and the like, which definitely affect the steady state

performance.
6.4. Solved problems

Prob. 1. A closed loop system as a forward transfer function given

k

G(s) =————.
25" +165+16

H(s)= X
5
Evaluate steady state error for mput ( r(t)=2+t)). when the gain is

equal to (2)?




Solution:

k
5(25* +165+16)

Open loop T.F.= G(s)*H(s)=

R(s)= < + i, 5
e
e =e:!; SR o SR
A

D —_ A =constant

=N I+1{\p
K =hm_ G(s)=1lim E = —=

; ' $(25* +165+16)
So that
e - 0.4=2

&5 position l + 0
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For the mput Sust)the Laplace transtorm is 5/s. the steady state

error will be :

o ) 5 5 $ 8

f(o)=e, (%)= — = == -

L - 1+ lm__, (3(¢) H@Q‘Z 1420 21
314

For the input Smur)the Laplace transform is 5/5°. the steady state

error will be :
5 hl

clw)ne‘v(m)- — e - .. "m0
' lim,_, ot5s) 0

For the input 5" uft/,the Laplace transform is 10/5°, the steady state
error will be :
10 10

= w—— )

m,_, s'G{s) O

#(%0) = € b (€)=




Example 3.A unity feedback system has the following forward
Lranster function:

100 £+ %)

() =——«—
i (24 TNs+9)

Use Matlab 1o find K, ¢, (o) and the closed loop poles to check
the stability for the svstem.

numg=1000%[1 8.

deng=poly(|-7 -9]

G=tl (numg.deng);

Kp=decgamn(G)

Estep=1/(1+Kp)

T=feedback(G.1); poles=pole(T)




H. 31 Find the value of K 1o vield a 10% error in the steady state for
a unity feedbuck who has the following forward transfer function.
Try to write Matlab code to solve this problem,

K(s+12)
(s +14)(s+18)

(r(s) =

Answer: K=189
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Confred Theory £ Steady-Sale Error

Solufion: 25.4%

=l “’ =
w1 — 047

Cis) .
It fallows that - L From the block diagram we have f— = ;
Ry Ts+s+K
3= IT 0 I I
oy = 5 5 ity —
NEn o

Therefare the valozs of T and K are determmed as

K=ol = 1165100 =14

Assist. Profl Dr. Yousif Al Mashhadany 29 76
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7.1. Introduction.
The response transform Xyxs) has the general form given by
Equation (7.1)which is repeated here in slightly modified form.
X () 1s the driving trunsform.

P(y) P()X,(3)

X, (3)=

1.1)
O(x) b +b "'+ +hs 15 (5)

X(8)=

The stability of the response Xy(t) requires that all zeros of Q(s)
have negatve real parts. Since 1t 18 usually not necessary o find the
exacl solution when the response 1s unstable, a simple procedure to
determine the existence of zeros with positive real parts 1s needed.
If such zeros of ((s) with positive real parts are found, the system

is unstable and must be modified. Routh's criterion is a simple




method of determining the number of zeros with positive real parts
without actually solving for the zeros of (Xs), Note that zeros of
Q(s) are poles of Xy(s). The characteristic equation is
Ns)=bs"+b " +...+he +8 =0 (7.2)

If the bo term is zero, divide by s to obtain the equation in the form
of Equation (7.2). The b's are real coefficients, and all powers of s
from s" to s' must be present in the characteristic equation. A
necessary but not sufficient condition for stable roots 1s that all the
coeflicients m Equation (7-2) must be positive. If any coetficients
other than by are zero, or if all the coefficients do not have the same

stgn, then there are pure imaginary roots or roots with positive real




7.2. Routh's Criteria Rules:

parts and the system is unstable. In that case it is unnecessary to
continue if only stability or instability is to be determined. When all
the coefficients are present and positive, the system may or may not
be stable because there still may be roots on the imaginary axis or

in the right-half s plane.

Routh's criterion is mainly used to determine stability. In special
situations it may be necessary to determine the actual number of
roots in the right half s plane. For these situations the procedure

described in this section can be used.




The coefficients of the charactenistic equation are arranged m the

pattern shown in the first two rows of the following Routhian array

These coefficients are then used to evaluate the rest of the constants

Lo complete the array

hu |
Cl
dl

il
ki

bu2
b3
2
2

bt
bas

(o)
o

d3

.......




The constants ¢l ¢2, ¢3; ... ete., m the third row are evaluated as
follows:
(b, )(B, )={5, Mh,)

)

€=

(";‘. .|Kh,.. I )—(h. -:'K;’l )
h

;=

(b, B, ) ~(b, )(5,)

0
2=l

(=

Tlus pattern is continued until the rest of the ¢'s are all equal to
zero. Then the d row is formed by using the sn-1 and sn-2 rows.

I'he constants are:




(b, )~ (b, ),
0

¢
d, ==

LY el &

d,
. (

(j - gi{’. -.’)-(b- [.K‘|

> ~
( |

This process is continued until no more d terms are present. The
rest of the rows are formed in this way down to the s0 row. The
complete array is triangular, ending with the sO row. Notice that the
s and sO rows contain only one term ¢ach. Once the array has been
found. Routh’s ¢riterion states that the number of roots of the

characteristic equation with positive real parts is equal to the




number of changes of sign of the coellicients m the first column.
Therefore, the system is stable il all terms in the [irst column have

the same sign
7.3. Solved problem for Checking System Stability.

Prob.d, Cheek the stability of the control system that it has
charactenstic equation m the following:

Q1= 8"+ 5"+ 108"+ 728 + 1525+ 240 2

Solution:

The Routhim array 1s lormed by using the procedure described

uwbove:




| I 152
L | 72 240
' —h2 —88

St 706 240
122.6

S 240

|

In the first column theére are tvo changes of sign, from | o -62 and
from 62 to T0.6; therefore, (is) has two roots m the nght-hall’ 5
plane {RHP) Note that this entenon gives the number of roots with
positive real parts but does not tell the values of the roots. Ii the

charactenislic equation is factored, the ols are 5 = =3, § 33 = =

14593, and 5.5 = +2 4§34, This caleulation confirms that there are




two roots with positive real parts. The Routh eriterion does not
distinguish between real and complex roots,

Prob.2. Check the stability of the control syvstem that it has the
following characteristic equationiC )

CE=s"+3+29

Solution:

51 2

$ 3 0

% 3”‘2—0“1:2

3




Because no change m the first column (prvoted column), there are
no poles in the right hand side (RHS) and hence the system is
stable

Prob.3. Check the stability of the control system that it has ¢le's
eqn. in the following:

Qs)=s' +387+ 88 + 33+ 12

Solution: The routh's array .

. pr DO
S350
0 1

2

‘
i |

=
-

-
J

¢ ]

2

P




Thas is one ol the special cases so that when we get zero m routh's
array to 11l full this theory replace the zero by symbol (&) and then

can be determined the range of stability for this system:

S (Bo=3o 0

§ 0

If we consider & a very small positive number {1t has either a very
small positive or a very small negative and this 1s optional and both
of them gives same final result|

A=(38 - 3)/ 6=3-3/6




Lim A= 3 A=-ve

s—0

This mean, there are fwo sign changes ( from +ve to <ve and from -
ve to +ve) . In other words two poles i the right hand side of s-

plane. therefore the system is unstable.

Prob4. The open loop transfer function of a umty negative
feedback control system  shown below, find the number of poles i
the left half right half of s-plane and on imaginary axis{jw).

128
SES" 38 #1087 4 2485 + 4887 £ 965" 11285+ 192

L’u'\\.\ !-(‘ ) 5

Solution:




The characteristic equation of svstem is

O(S) =857 387 + 108° + 248" + 485" + 968" + 12857+ 1925 4 128

Routh's table can constructed as follows

Sl
3-7
b-t'
S!
L\-l
‘\'"
S:
é'l’
Sl}

i
3
2

{

1 48
24 26
16 64
0 0
" n

128
0




Thas is the second special case ;when all the row elements are
ZET0S.

To solve this, retumn to first even polynomial (S”) and form a new
polynomial which is called auxiliary equation as [ollows:

Ps)=28" 4168 +645 +128

But the auxiliary equation mn the simplest form and this can be done
for each row of the Routh's table.

Ps)=8"+85"+3287 + 64

Next step differentiate this polvnomiul with respect 10 S to form

the coeflicients that replace the row of zeros:

i)
u’F{(ﬁ’ - ()S‘ ‘_32:'\--‘ + 645 =0
s




Now the coeflicients o S” in the maim table will be as follows:

8 6 2 64

'ws

Then complete the table as in the previous examples. If vour
calculation 1s correct vou find two sign changes from the even
polynomial( sixth order). Hence the svstem has two right half plane
poles. Because of the svmmetry about the origin .the even
polvnomial must have an equal number in the left half plane poles.
The remamng two wall be on J-w axis. There are no sign change
from the beginming of the table down to the even polyvnomial(sixth
order), Therefore the rest of the polynomial has no night half plane

poles.




The final result will be two poles in the right half, four poles m the
lefl half and two poles on the imaginary axis. Hence the svstem is
unstable.

[n the Matlab we will come to the closed loop control system und
the code will be as follows:

numg=128;

deng=[131024 .

48 96 128 196 0]

G I=tinumg.deng );

G=feedback(G1.1)

poles=pole(G)
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Comtral Theory | Howth 's Stabiliey Criterion

H.W.1. Consider the following characteristic equation:

s+ 289+ 4+ K)s2+95+25=0

Using the Routh stability criterion, determine the
range of K for stability? (( Ans: K> 6.056))

Lssise. Prof. Dr. Yousif U Mashhadan) 20- 20




H.w.2. Consider the closed-loop system shown in Figure 1,
If K/J=4, what is the value of K, will yield the damping ratio
to be 0.6? (( K;,=0.6))

H.w.3. Consider the closed-loop system shown in Figure 2.

Determine the range of K for stability. Assume that K>0.

(( Ans: 12.5>k>0))

Figure 2
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Walter Richard Evans (January 15, 1920 — July 10, 1999)
was a noted American control theorist and the inventor
of the root locus method in 1948. He was the recipient
of the 1987 American Society of Mechanical
Engineers Rufus Oldenburger Medal and the
1988 AACC's Richard E. Bellman Control Heritage
Award.



https://en.wikipedia.org/wiki/Root_locus
https://en.wikipedia.org/wiki/American_Society_of_Mechanical_Engineers
https://en.wikipedia.org/wiki/Rufus_Oldenburger_Medal
https://en.wikipedia.org/wiki/American_Automatic_Control_Council
https://en.wikipedia.org/wiki/Richard_E._Bellman_Control_Heritage_Award

8.1. Introduction.

To facilitate the application of the root-locus method, the
following rules are established for K > 0. These rules are based
upon the interpretation of the angle condition and an analysis
of the characteristic equation. These rules can be extended for
the case where K < 0, The rules for both K> 0 and K <0 are
listed in Sec. 7.16 for ¢asy reference. The rules presented aid in
obtaining the root locus by expediting the plotting of the locus.
The root locus can also be obtained by using the MATLAB
program. These rules provide checkpoints to ensure that the

computer solution is correct. They also permit rapid sketching




of the root locus, which provides a qualitative idea of achievable

closed-loop system performance.

8.2. General Rules of Root Locus.
Rule 1: Number of Branches of the Locus:

The characteristic equation C.E.(s)=1+G(s)H(s)=00 is of
degree n=mu; therefore, there are n roots. As the open-loop
sensitivity K is varied from zero to infinity, each root traces a
continuous curve. Since there are n roots, there are the sume
numbers of curves or branches in the complete root locus. Since
the degree of the polynomial C.E.(s) is determined by the poles

of the open-loop transfer function, the number of branches of




the root locus is equal to the number of poles of the open-loop
transfer function.

Rule 2: Real-Axis Locus:

In Fig. 1 are shown a number of open-loop poles and zeros. If
the angle condition is applied to any search point such ay sl on
the real axiy, the angular contribution of all the poles and zeros
on the real axis to the left of this poeint is zero. The angular
contribution of the complex-conjugate poles to this point is
360°. (This is also true for comples-conjugate zeros.) Finally,
the poles and zeros on the real axis to the right of this point
each contribute 180° (with the appropriate sign included), From

Eq.(1) the angle of G(s)H(s) to the point s1 is given by




f =3 (angles of denominator terms) 3 (angles of numerator terms)
20180 for K >0
k360 for K <0

G + &1+ &2 + O3 + (o) + (a)] = (W1 +¥2) = (1 +2h) 180°
r
180 40 40 +0 4360 <0 <0 =(1+42m180

Issist. Prof. Dr. Youstf Al Mashhadany
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Rule 3: Locus End Points:

K

\W(s)| = K = Lle=t 18 — Pl

[Tis 5‘ Zn)

lssist. Prof. Dr. Youstf A Mashhadany

5"l ls=pul - Is—pal - Is - pul

= loop sensitivity
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Since the numerator and denominator factory of Eq.(4) locate
the poles and zeros, respectively, of the open-loop transfer
function, the following conclusions can be drawn:
1) When s=pc (the open-loop poles), the loop sensitivity K is
Zero.
1) When s=zh (the open-loop zeros), the loop sensitivity K is
infinite.
When the numerator of Eq.(4) is of higher order than the
denominator, then s=1 also makes K infinite, thus being
equivalent in effect to a zero. Thus, the locus starting points
(K=0) are at the open-loop poles and the locus ending points
(K=1) are at the open-loop zeros (the point at infinity being




K(s—zy)---(s—z,) K[ ,(s—2)

G(s)H(s) = = "
(s)H(s) Ms—p)(s—p) [T G -p)

K(s=z) (s=12,) N
s (s=py)--(s=p,)

Gis)H(s) =

Lssise. Prof. Dr. Yousif U Mashhadan)
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lim Gis)H(s) = lim | K M] i)
B, nc—-l (S ,’r’

PR i

-~K=5"
|-K| = |s""'| Magnitude condition
[=K = =(142mI80°  Angle condition

Rewriting Eq. (9 ) gives (n — w). S = (14 2h)180 or

(14 2h)180° ——
-— as § — 0
n-=w

Lssise. Prof. Dr. Yousif U Mashhadan) 11-48




(1 2h)180°

=
]

Lesevr Progf B Vewsgf U Aasivhadany

|[number of poles of Gis)(s)] = [number of zeros of Gis)H(s)]
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g, =
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Kule 6: Breakaway Foint on the Keal AXIs

The branches of the root locus start at the open-loop poles
where K=0 and
end at the finite open-loop zeros or at s=1.When the root locus

has branches




-
-
-
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on the real axiy between two poles, there must be a point at
which the two branches breakaway from the real axis and enter
the complex region of the s plane in order to approach zeros or
the point at infinity. (Examples are shown in Fig, 4.0-3: between
pO and pl, and in Fig. 4.b-2: between p2 and p3.) For two finite
zeros (see Fig. 4.b-1) or one finite zero and one at infinity (see
Fig. 4.a-1) the branches are coming from the complex region
and enter the real axis, In Fig. 4.a-3 between two poles there is
a point s a for which the loop sensitivity K 2 is greater than for
points on either side of s a on the real axis,

In other words, since K starts with a value of zero at the

poles and increases in value as the locus moves away from the




poles, there is a point somewhere in between where the K's for
the two branches simultaneously reach a maximum value. This
point is called the breakaway point. Plots of K vs. s utilizing
Eq.(3) are shown in Fig.4 for the portions of the root locus that
exist on the real axis for K = 0. The point sb for which the value
of K iy a minimum between two zeros is called the break-in
point. The breakaway and break-in points can easily be
calculated for an open-loop pole-zero combination for which
the derivatives of W(s)=K is of the second order. As an

example, if




Kk
s+ INs +2)

Gis)(s) =

then
Wis) =sts+ I)s+2)= K
Multiplying the factors together gives

W)= +3¢ 4+ 2s=-K

dW(s)
ds
Sob=—1%05743 = -04257, -1.5743

Lssise. Prof. Dr. Yousif U Mashhadan)
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Since the breakaway point’s s a for K > 0 must lie between s=i
and s=-1, in order to satisfy the angle condition, the value is
=-:4257,
The other point, sh=-1.5743, is the break-in point on the root
locus fork <0.
Substituting s,= 0.4257 into Eq. (11) gives the value of K at the
breakaway
Point for K> 0 as

K= <[(=0426) + (3)(=0.426)° 4 (2)( -0.426)] = 0.385
When the derivative of W(s) is of higher order than 2,a digital-
computer program can be used to calculate the roots of the

numerator polynomial of dW(s)/ds; these roots locate the




breakaway and break-in points. Note that it is possible to have

both a breakaway and a break-in point between a pole and zero

(finite or infinite) on the real axis, as shown in Figs.4a-1, 7.11a-

2, and 4.b-3. The plot of Kvs. s for a locus between a pole and

zero falls into one of the following categories:

1. The plot clearly indicates a peak and a dip, as illustrated
between pl and zI in Fig. 4.b-3. The peak represents a
maximum’ value of K that identifies a break-in point.

2. The plot contains an inflection point. This occurs when the
breakaway and break-in points coincide, as is the case

between p2 and 71 in Fig. 4a-2.




3. The plot does not indicate a dip-and-peak combination or an
inflection point. For this situation there are no break-in or
breakaway points.

The next geometrical shorteut is the rapid determination of the

direction in which the locus lTeaves a complex pole or enters a

complex zero. Although in Fig.5.a complex pole is considered,

the results also hold for a complex zero.

In Fig.5.a, an area about p2 is chosen so that 12 is very much

smaller than 10, 11, 13, and (1 )1. For illustrative purposes, this

area has been enlarged many times in Fig.5h, Under these
conditions the angular contributions from all the other poles

and zeros, except p2, to a search point anywhere in this area




Gg+ &)+ s+ 3 — ¥y =(1+ 20180

or the departure angle is
¢2n=“ +2h"80 -(¢o +¢| +90; - ‘h'
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pole-zero arrangement shown in Fig.6, the approach angle ¢l to
the zero z1 is given by
¥, = (¢ + ¢+ ¢, 90 ) (1 4 2/n180

In other words, the direction of the locus as it leaves a pole or
approaches a zero can be determined by adding up, according
to the angle condition, all the

angles of all vectors from all the other poles and zeros fo the
pole or zero in question, Subtracting this sum from (1+2h)180°

gives the required direction.
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uly T T 12 il 7 opiy )+ secrler 4 ) pf 12 )
Kule 7: ( OImpiex Pole (or Zero): ingie of f’l/.‘(.'.'tnu.

The next geometrical shorteut is the rapid determination of the
direction in which the locus leaves a complex pole or enters a
complex zero. Although inFig.7.a complex pole is considered,
the results also hold for a complex zero.
In Fig. 7.a, an area about p2 is chosen so that 12 is very much
smaller than 10, 11, 13, and (1) 1. For illustrative purposes, this
area has been enlarged many times in Fig. 7.h. Under these
conditions the angular contributions from all the other poles
and zeros, except p2, to a search point anywhere in this area
are approximately constant. They can be considered to have
values determined as if the search point were right ot
2. Applving the angle condition to this small area vields, In a
similar manner the approach angle to a complex zero can be
determined. For an open-loop transfer function having the
pole-zero




Fig. 8. Angle condition in the vicinity of a complex zero.
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Wy, = (&g + &) + &, — 90°) — (1 + 21180
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S +bs’+es+Kd=0

the Routhian array is
5|1 ¢
s b Kd
s' | (be — Kd)/b
" Kd

bs® + Kd =0
and its roots are

[Kd

. |K .
Nhp = #V—b— o i:](l).
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The loop sensitivity term K is determined by setting the sl row
to zero:
K =hedd
For K > 0, Eq. (12) gives the natural frequency of the
undamped oscillation. This corresponds to the point on the
imaginary axis where the locus crosses over into the right-half s
plane. The imaginary axis divides the s plane into stable and
unstable regions. Also, the value of K from Eq. (K =bc/d)
determines the value of the loop sensitivity at the crossover
point. For values of K < 0 the term in the s0 row is negative,
thus characterizing an unstable response. The limiting values
for a stable response are therefore
(<K <beid

In like manner, the crossover point can be determined for
higher-order characteristic equations. For these higher-order
svstems care must be exercised in analyzing all terms in the




first column that contain the term K in order to obtain the
correct range of values of gain for stability.

Rule 9: Intersection or Non-intersection of Root-Locus Branches:
The theory of complex variables vields the following properties:
1. A value of s that satisfies the angle condition of Eq. (1) is a
point on the root locus. 11 dW({s)/ds # 0 at this point, there is one
and only one branch of the root locus through the point.

2. If the first y_1 derivatives of W(s) vanish at a given point on
the root locus, there are v branches approaching and vy
branches leaving this point; thus, there are root-locus
intersections at this point. The angle between two adjacent
approaching branches iy given by

360

.l.




Fig. 9. Root locus for

K

OSH) = 2 + AN + 65 1 10)°
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Find Cis)/R(s) with J= 0.5 for the dominant roots (roots closest to the
imaginary axis) for the feedback control system represented by
K

=ty 4 A=

0,045+ 1
Rearranging gives

2600K, N

)~ e L

A5 + 1005+ 2600) D,

Thus,

Gis)His) SN
e T T, T BT o
S5+ 25K + 1005+ 2600)  5° + 1255 + 51005 + 65,0005

where K= 65,000K,.

. The poles of G(s)H(s) are plotted on the s plane in Fig. below
the values of these poles are s=0,-25, 50+ 710, -50 - 10,
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Location of the breakaway point.
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The system is completely unstable for K < 0, Thercfore, this
example is solved only for the condition K > 0
There are four branches of the root locus.
The locus exists on the real axis between O and - 25,
The angles of the asymptotes are
(1 + 241 80°
4
The real-axis intercept of the asymptotes is
B ;so—so= a¥ae
The breakaway point 5, on the real axis between 0
and —25 is found by solving dW(s)/ds = 0
—K = 5 + 1257 + S1005 + 65,0004
TR L 49 43754 4+ 10,2005 + 65,000 = 0
8= -9.15

The angle of departure &;  from the pole —50 + /10 is obtained from

- 445 £135°

Go+ 4+ 024+ &, = (1 +2NI80°
168.7° + 15827 + 90° + &, = (1 + 2M180°
&, = 123.1°

Similarly, the angle of departure from the pole —50 4 /10is —123.1",
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8. The imaginary-axis intercepts are obtained from

Cls) 2600K,(s + 25)
Ris) ¢ + 1256 + 51008 + 65,0005 + 65,000,

The Routhian array for the denominator of C(s)/ R(s), whichis the
characteristic polynomial, is

5100 65,000K,
520 (after division by 125)
14.2K; (after division by 4580)
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Pure imaginary roots exist when the ' row is zero. This occurs
when K = 520/14.2 = 36.6. The auxiliary equation is formed
from the 5° row:

£+ 142K, =0
and the imaginary roots are

sk 42K m % V520 =+ f228

Additional points on the root locus are found by locating points
that satisfy the angle condition

v [5425 o 545010 o S5+ 504710
= (1 + 2m)1 807

The root locus is shown in Fig.10
10. The radial line for [ = 0.5 is drawn on the graph of Fig. 10 at the

angle
N o=cos 0.5 =60

The dominant roots obtained from the graph are
ny==0661114
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Il The gainis obtained from the expression

K = 65,000K; = Ls| |54 25| < [s 430 ~ 710 - s + 50 4 /10|
Inserting the value s, = —6.6 4 /1 1 4into this equation yields

K = 65,000k, = 598,800
K; =925

65 000K

0. 1 = .
Fig 10. Rootlocus for G = oo 7oy s + 1008 + 2600
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12. Theother rootsare evaluated to satisfy the magnitude condition K =

598,800. The remaining roots of the characteristic equation are
5= —-5594£/180

The real part of the additional roots can also be determined by
using the rule from Eq. (7.68):
0254 (=50 4 j10) 4 (=50 —j10)

=(~6647118) £(—6.6 —jI1.4)+ (o4 ju,) + (o juy)
This gives o = —359

By using this value, the roots can be determined from the root

locus as ~55.9 + j18.0.

The control ratio, using values of the roots obtained in steps 10
and 12,15

Clix) . -|’)1
R(s) factors determined from root locus

13.

1
T bh4 AN+ 611 A)
24 My + 25)
GRS s A SSuI)
248400 +25)
IS I3 4 TS 4 11T B ¢ 3450)
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.(2). Plot Root Loci for system shown below:
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_
Gs)H(s) - K(s +1)

s(s = 1)( + 45 + 16)
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or system shown below:

\/ K
%.-l

-7 -6 -5 -4

K=0638
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Asymptotes: K>0: %"

Intersect of Asymptotes:

Breakaway-point Equation: s =25’ ~95=0

Breakaway Points: =207, 207, -j147, j147
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. Plot the root loci for the

G(s)H(s)=

0

Asymptotes: K> 0: 130

K(s+1Xs+2Xs+3)

s (s=1)

Breakaway-point Equation: S s 45 425 -85 =0

Breakaway Points: =121,
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